CONTAMINAZIONE DA EPT NEI SISTEMI ACQUA – SUOLO – PIANTA: PROCESSI DI RISANAMENTO

Le terre ricostituite: tecnologia e possibili applicazioni nella bonifica dei suoli contaminati

The reconstituited soils: the technology and its possible implementation in the remediation of contaminated soils

Workshop 8-9 June/giugno 2016 - Palazzo Sersanti – Imola

La ricostituzione dei suoli

The technology of soil reconstitution has been conceived for restoring degraded land and acts on unproductive and desertification affected soil by modifying its structure through a treatment of soil loosening and subsequent reconstitution

Reconstitution is based on the incorporation of organic matter into the soil mineral fraction: the process takes place along with the simultaneous destructuring of aggregates.

In the final stage a compression of the loosened soil mass referred to as reconstitution takes place.

The treatment is both mechanical and chemical and generates a (final) product which has properties and characteristics different from those of the matrices it originally derived from.

The treatment begins by blending waste materials from different industrial and agro-industrial activities into the soil, then the actual reconstitution process takes place.

Such matrices referred to as non-hazardous waste must meet specific suitability standards in compliance with the law.

Analisi sul tal quale D. Lgs. 152/06

Reconstituted soils are produced with waste matrices of special agronomic and environmental interest generated by various industrial activities which don't use environmentally hazardous substances and compounds in their production process. Such activities are:

Paper and wood pulp production Production of drinking and industrial water **Electicity production** Natural aggregates washing plants Hydroelectic dams Production of titanium dioxide/gypsum

1cm

10cm

Reconstituted soil production

The production process of reconstituted soil is illustrated in the following flow-chart:

Reconstitution can be performed either inside a mobile or stationary plant and has been used so far for the treatment and production of fertile soil from degraded and unproductive soil.

The first implementation was started in 2006 on an unproductive plot ranked between Class IV and V in the Land Capability Classification System(LCC). The already unfavourable soil conditions were aggravated by mining activities which had been conducted on site and followed by an inappropriate remedial action.

The reconstitution process lasted 4 years and significantly boosted productivity.

High crop yield

«As expected, the restoration project on this site has had a positive impact on soil fertility thus allowing demanding crops such as maize to be grown without using large quantities of fertilizers »

3,83 m

«Crops grown on reconstituted soil increased ear weight by 21% as opposed to those g natural soil » PILOT FARM "VITTORIO TADINI" REGIONE EMILIA

Reduction in fertilization requirements

«Results have evidenced the effectiveness of the treatment and shown that reconstituted soils can increase production while reducing nitrogen fertilization by 50%. »

INSTITUTE OF AGRICULTURAL AND ENVIRONMENTAL CHEMISTRY, UNIVERSITÀ CATTOLICA DEL SACRO CUORE, PIACENZA

Improvement in soil workability

«.... this soil has a better workability than natural soil therefore machinery such as tractors and smaller tools will run on reduced power and irrigation requirements will be cut down » PILOT FARM "VITTORIO TADINI" REGIONE EMILIA ROMAGNA

Saving on irrigation costs

«....reconstituted soil which has preserved high productive levels while reducing water requirements by 45% »

ISTITUTE OF AGRICOLTURAL AND ENVIRONMENTAL CHEMISTRY, UNIVERSITÀ CATTOLICA DEL SACRO CUORE, PC

Listed below are the improvements in soil conditions resulting from changes generated by reconstitution:

Increase in soil thickness – root depth (from shallow to deep)

Reduction of the soil skeleton and surface stoniness (from exceedingly stony to slightly stony)

Improvement in aggregate structure – porosity increase

Increase in water retention

Decrease in soil reaction (from 8,3 to 7,9 pH)

Decrease in active lime and total lime

Increase of organic matter and C/N ratio

Increase of humic fraction

Increase in P Olsen phosphorus availability

Marked increase of heterotrophic aerobic bacteria and fungal population

Increase in soil thickness

TANK .

Increase in root development

Lumpy structure

The fact that the effectiveness of the treatment has succeeded in improving some of the soil properties suggests that further expansion into the field of contaminated soil remediation is to be expected

Properties of reconstituted soil in relation to different remediation techniques

Biopile

Soil characteristics for assessing the effectiveness of biopile are

- Microbial population density
- Soil pH
- Moisture
- Soil temperature
- Nutrients concentrations
- Type of soil at the site and surrounding area (sandy, silt and clayey) and its structure

Microbial population density

Reaction

Soil reaction in relation to biopile effectiveness			
Soil pH	Biopile effectiveness		
[6 – 8]	Optimal range for bio-remediation		
[<6 - >8]	Unsuitable range; will require amendments		

Reaction

Soil moisture in relation to biopile effectiveness

Soil moisture		Biopile effectiveness		water			
	$40\% \le$ Field capacity $\le 85\%$			Optimal range for bioremediation		biosi poturoli	
	Field capacity < 40%			Unsuitable values; moisture addition is needed to maintain bacterial growth		biosi naturan -	
	Fie	eld capacit	ty > 85%	Unsuitable valu system should	ues; a special water be designed	drainage	
25 20 15 10 5 0	atural soil (s	sand)	Natural soil (sand)	reconstituited	68 66 64 62 60 58 Natural soil (sand) Natur recon	al soil (sand) stituited

Soil temperature

Soil temperature in relaction to biopile effectiveness				nd enzymatic
Soil temperature		Biopile effecti	veness	
$10^{\circ}C \le soil temperature \le 4$	5°C Optimal	range for bio-remed	iation	
10°C > soil temperature > 4	5°C Unsuital such as: area, inj introduc within n	ole values; measures mitigating climate in ecting heated air into ing special bacteria p on-optimum tempera	should be adopted the surrounding the biopile or opulations active ature ranges.	
17	R	econstituited soil		uolo naturale uolo ricostituito
15	10.08.13 11.08.13	12.08.13 ***	13.08.13	14.08.13
		COSISTEMI		

V

Soil temperature

Temperatura del suolo

Nutrient concentrations

Nutrient concentrations are adjusted to suit the conditions of the soil that needs bioremediation treatment

C:N:P 100:10:1

Specific mineral amendments

		S	C. Matrice			C org g/kg
		SC.	Matrice		Ntot	g/kg (%)
nent	SC			P Olsen		< 0,1
		Matrice		mg/kg	1,50	0 (0,15%)
LES	5, 33	Cartiera Favini	i	11 0	2,30) (0,23%)
	S. 12A	Villa Lagarina		4.59	2,40	(0,24%)
	S.22	Lucart		5,05	2,80	J (U.28%)
	S.1	Pescia		18,5	2,0	(0,28%)
	S.11	Cartitalia		28,7	2,90	(0,23%)
	S.3	DSSmih		18,2	3 3((0,31%)
	S.4	Cartiera Garda	a	14,1	3.9) (0.39%)
	S.	Mosaico srl		0,08	4.5) (0.45%)
	S.5	Carbonera		74,8	4,50	0 (0,45%)
	S. 6	Champaper Ca	armignano	7,21	4,5	5 (0,45%)
ntc	S.13	Cordenons		14,5	4,60 (0,46%)	
1115	S.7A	Fedrigoni (Arc	o)	6,23	4,90	0 (0,49%)
	S.29B	Cartiera Giaco	sa	0,00	4,90) (0,49%)
	S.33	Favini s.r.l.		7,40	5,1	5 (0,51%)
	S.29°	Cartiera Giorg	ione	5,67	5,40	0 (0,54%)
	5.14	Europaper		29,9	5,40) (0,54%)
	5.18	Delicarta	270.70	78,1	6,20	0 (0,62%)
	5.30	Borgo group S	arego	21,0	6,80) (0,68%)
	5.54 6.70	Toscolario Eodrigoni Voro		10.1	8,10) (0,81%)
	5.7C	Mediterranea	Mign	2.24	8,40	0 (0,84%)
	<u> </u>	Cartiera Gallie	vigit.	38.0	10,4	4 (1,04%)
	5.2 5.32	Cartiera di Tol	entino Srl	18.9	10,	7 (1,07%)
	S.8	Mediterranea	- Isoverde	0.73	11,4	+(1,14%)
	S.12B	Cartiere Villa I	agarina	408	14,8	5 (1,48%) 1 (4,240/)
ECOSI	S.20	Publiacqua Ar	nconella	15,3	43,4	+ (4,34%)
	\$ 36	Burgo Gruon V	/orzuolo	117	55,	JJJ 70J

Texture - Structure

Texture - Structure

Texture - Structure

Fitorimediazione - Landfarming

Soil characteristics for evaluating the efficiency of phytoremediation and landfarming treatments are

- microbial population density
- soil pH
- moisture content
- soil temperature
- nutrient concentrations
- type of soil at the site and surrounding area (texture) and its structure
- development of root system

The wider the root system the greater the effectiveness of phytoremediation treatments

Mechanism Process	Typical Contaminants	Plant Types
Phytostabilization	As, Cd, Cr, Cu, Pb, Zn	Herbaceous species, grasses, trees, wetland species
Rhizodegradation	Organic compounds (TPH, PAHs, BTEX, pesticides, chlorinated solvents, PCBs)	Herbaceous species, grasses, trees, wetland species
Phytoaccumulation	Ag, Au, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Zn; Radionuclides: 90Sr, 137Cs, 239Pu, 234, 238U	Herbaceous species, grasses, trees, wetland species
Phytodegradation	Organics compounds, chlorinated solvents, phenols, pesticides, munitions	Algae, herbaceous species, trees, wetland species

The technology of reconstitution used for the remediation of contaminated soil may represent a valuable innovation worth considering when conducting feasibility studies in the field of bioremediation, and for enhancing natural attenuation processes in polluted soil.

